

Optical Splicing System

Fibrlok™ II Optical Splicing System

The Fibrlok II Optical Fiber Splice provides a precise, simple and low cost method of splicing optical fiber. The splice design utilizes an articulated metallic splicing element held inside a molded plastic body and cap to provide a fast, permanent, low-loss splice.

Assembly of the Fibrlok II splice requires only removal of the fiber coating, and cleaning and cleaving of the fiber. The inexpensive Fibrlok Assembly Tool turns any craft person into a splicing expert.

After preparation, the two fibers are inserted into the Fibrlok splice.

The assembly tool is then used to close the cap, forcing the clamping and locating surfaces against the fibers and aligning the fibers precisely and permanently in place.

Fibrlok 2501 Assembly Tool

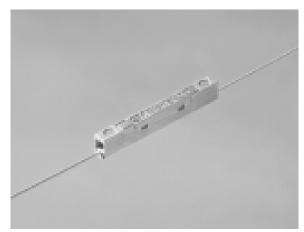
Product Referral Generator

na 220

Splice trays & Organizers	pg. 239
Fiber Optic Closures	pg. 239
Fibrlok Multi-Fiber System	pg. 235
Cable Cleaning	pg. 373
Shield Bonding	pg. 197

Features-Benefits

Optical Fiber Splices		
High performance, permanent fiber optic splices	Fast—30 second installation time	
Splices both single-mode and multimode fibers	Reduced inventory requirements	
Minimum tooling requirements	Low capital cost	
No operation and anticity required	Easy on-site installation in any splicing	
No epoxy or electricity required	environment	
A single cleave length for 250 and 900 micron	Increased splicing productivity	
splicing		
The ability to "reposition" fibers	Improved splicing yield	
Six splices each in a compact package	Ease of use, convenience	
Single splice for any coating size 250 µm - 900 µm	Reduced inventory	

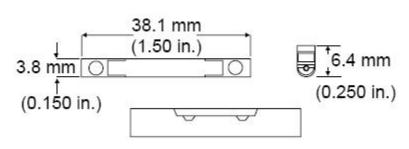


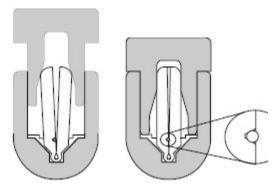
Optical Splicing System

Fibrlok™II 2529 Universal Optical Fiber Splice

The Fibrlok II 2529 Universal Optical Fiber Splice was designed for splicing any combination of 250 to 900 micron coated fibers. Utilizing field-proven Fibrlok technology, the 2529 universal splice provides a single-splice size, as well as all the advantages and benefits of the original Fibrlok II Optical Fiber Splice.

The universal optical fiber splice is fully compatible with the original Fibrlok and Fibrlok II optical fiber splices, splice trays and organizers. The Fibrlok universal splice utilizes the same assembly tool and easy strip, clean, cleave and splice procedure as the original splices, minimizing the need for additional product training.

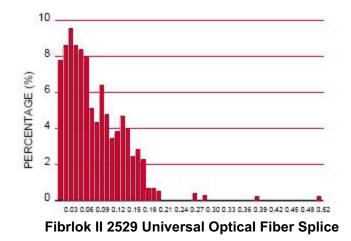



The 2529 universal splice provides a single cleave length for 250 and 900 micron coated fibers. It has the ability to "reposition" fibers for improved splicing yield, provides individually sealed compartments for the enclosed splices because of the new compact splice package.

The ideal solution for both permanent and restoration splicing applications.

The 2529 splice insertion loss averages less than 0.10 dB. Fiber retention is greater than one pound minimum. The splice displays superior thermal stability, delivering stable performance from -40° to 80°C (-40° to 176°F).

The Fibrlok II universal optical fiber splice can be used with either single-mode or multimode fibers with a (nominal) glass cladding diameter of 125 microns. Whether your application is aerial, buried, underground or pedestal; outside plant or inside building; the Fibrlok II 2529 universal optical fiber splice is the ideal solution for all your splicing needs.



Cross-sectional view of open and actuated Fibrlok II 2529 Splice

Optical Splicing System

Loss (dB)

This distribution represents initial insertion loss test results for 550 Fibrlok II 2529 Optical Fiber Splices (homogeneous splicing, 250 µm coated fiber). Mean insertion loss 0.07 dB. 0.2% of all splices had a loss > 0.5dB.

Fibrlok II Optical Fiber Splice Specifications

Fiber diameter	125 µm
Coating diameter	250 to 900 μm, any combination
Shelf life	30 years
Installation time	<30 seconds after fiber preparation
Mean insertion loss	<0.1 dB
	<-35 dB from -40° to 80°C (-40° to 176°F)
Reflection	<-55 dB from -40° to 80°C when used with 2650 Angled Cleaver Adapter
	<-60 dB typical at room temperature
Tensile strength	1.0 lb. minimum; >3.0 lbs. typical
Material	Engineering thermoplastic with aluminum alloy element; UL 94, V-O rating
Operating temperature	-40° to 80°C (-40° to 176°F)
Thermal cycling	Change in insertion loss <0.05 dB, -40° to 80°C (-40° to 176°F)
Fungus resistance	ASTM G-21-70; rating 0
Vibration	EIA standard FOTP-11; test condition 1
Water immersion	Seven days @ 43°C (109°F); change in insertion loss <0.05 dB